Dust Grains Escape a Dismal Fate To Build Planets

New simulations show dust-trapping, ringlike structures could help explain our solar system’s architecture.

By Theo Nicitopoulos
Jan 21, 2022 3:00 PM
protoplanetary disk
(Credit: Alifelove Blog/Shutterstock)

Newsletter

Sign up for our email newsletter for the latest science news
 

In protoplanetary disks — the gas and dust clouds from which planets are made — the orbits of millimeter-sized dust particles drift inward. If these pebbles don’t accumulate in certain regions of the disk where they can collide and stick together to grow planetesimals, which are kilometer-sized, planet-forming rocks, they will be engulfed by the star.  

Until recently, scientists couldn’t prove the existence of such ‘dust traps.’ But telescope observations have detected concentrations of larger dust grains in protoplanetary disks that demonstrate their possibility. One of the most compelling examples: the HL-Tauri star’s disk that has pebbles concentrated in ringlike locations — a feature possibly shared by the disk that formed our own solar system. 

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.